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ABSTRACT 

A nuclear reactor  space power system using 
m 
N diodes, heat pipes, and a dual cent ra l  rod type 

was  investigated.  Ehphasis i s  on the neutronic w ? 

out-of-pile thermionic 

of r e a c t i v i t y  control  

aspects and general 

f e a s i b i l i t y  of the  concept. In  t h i s  concept heat i s  t ransfer red  from 

t h e  reac tor  core t o  the  thermionic diodes by layers  of radial heat 

pipes stacked a l te rna te ly  w i t h  slabs of fue l .  For t h i s  out-of-pile 

concept, which would supply 130 kWe, the reactor  can be considerably 

smaller than the  equivalent reactor  w i t h  in-pi le  diodes, when used 

w i t h  a shadow shield.  
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3 w 
A nuclear space power system using out-of-core thermionic diodes 

The purpose of t h i s  study 
N 

and cooled by heat pipes has been studied. 

is  t o  es tab l i sh  a consistent s e t  of specif icat ions fo r  the  power sys- 

tem; the  emphasis i s  on neutronics and general f eas ib i l i t y .  The power 

system uses a cyl indrical  f a s t  spectrum reactor  f'ueled with uranium-233 

n i t r i d e  and re f lec ted  by molybdenum. The reactor ,  including the  r e -  

f l ec to r ,  is  0.355 meter i b  diameter and 0.51 meter long.. Heat ' ; i s ,  

t ransferred f r o m t h e  reactor core t o  thermionic diodes by layers  of 

radial heat pipes stacked al ternately with s labs  of f'uel. 

Each annular layer  of f u e l  or  heat pipes is formed from sector- 

shaped elements. Outside the radial  r e f l ec to r  the  diodes a re  placed 

concentrically around the  heat pipes. All 24 heat pipes on an axial 

l e v e l  terminate i n  a radiator  which takes the  form of a f la t  disk. 

The r eac t iv i ty  control system consists of a cent ra l  rod and a 

concentric tubular sheath of boron-10 carbide located along the  cyl- 

i n d r i c a l  axis  of the  reactor.  The rod and sheath a r e  separated ant% 

cooled by a concentric annular heat pipe. 

The ax ia l  power i s  ta i lored  by nonuniform dis t r ibu t ion  of f u e l  t o  

provide approximately the same heat flux t o  each of the  10 ax ia l  layers  

of heat  pipes. This ta i lor ing ,  t o  wi th in  5$, allows more uniform 
TM X-52446 
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performance of the  thermionic diodes. Parameters representing the s t a t e  

of the a r t  a r e  used t o  s e t  performance leve ls .  About 860 diodes convert 

the  thermal output power of 1.74 MWto an k leCtr5c  power oQtput of about 

130 kWe, an overal l  efficiency of  7.5$. It i s  found t h a t  the  reactor of 

t h i s  out-of-pile concept can be considerably smaller than the equivalent 

reactor with in-p i le  diodes, when used with a shadow shield.  
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IN'lR ODUCTION 

System studies,  such as i n  Ref. 1, have shown t h a t  above a power 

l eve l  of 100 kWe, a nuclear reactor  is  the  most promising heat source. 

Several conversion systems, which convert t he  thermal energy of a nu- 

c lear  reactor t o  e l e c t r i c a l  energy while operating i n  the space en- 

vironment, a r e  currently being examined. However, ncme of these con- 

version systems (gas Brayton cycle, l iqu id  metal Rankine cycle, or  

in -p i le  thermionic diodes) demonstrates an obviously superior perform- 

ance. 

This work deals with a thermionic system, but one which has the  

thermionic diodes outside rather  than inside the reactor  core. Out- 

s ide  the  reactor core the radiation environment is  not so harsh and 

thus the  nuclear degradation of the diodes is  l e s s  than  i f  they were 

ins ide  the  core. 

p i l e  thermionic diodes is par t icular ly  promising when considered i n  

conjunction with the  heat pipe, an e f f i c i en t  and simple method of high 

heat transference. Furthermore, t h i s  almost isothermal heat t ransfer  

property of the  heat pipe allows the out-of-pile diode emitters t o  be 

a t  about the same temperature as the emitters of in-pi le  diodes. 

The f e a s i b i l i t y  and poten t ia l  performance of out-of- 

Two out-of -p i le  thermionic space power concepts ( r e f s .  2 and 3 ) ,  

each cooled by heat pipe, have been previously described. Refer- 

ence 2 describes a concept which uses 120  heat pipes t o  provide a 

power output of 36 kWe. The design i n  Ref. 3 is  more ambitious i n  

t h a t  it would supply 10 We but with a corresponding increase t o  sev- 

e r a l  thousand heat pipes. 
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I .  

This difference i n  power levels  r e f l e c t s  t h e  wide range of e lec-  

t r i c a l  power l eve l s  tha t  w i l l  be required f o r  the var ie ty  of future 

space missions. 

quired f o r  such spec i f ic  missions as: 

used f o r  d i r ec t  broadcast t o  individual homes, 20-40 man o r b i t a l  space 

s t a t ions ,  a modest lunar base, and propulsive power f o r  unmanned deep 

space probes. 

I n  par t icu lar ,  power i n  the 100 kWe range w i l l  be re -  

a s a t e l l i t e  i n  synchronous o r b i t  

The present work examines a thermionic heat pipe space power 

source s i m i l a r  t o  t h a t  i n  Ref. 2 .  However, t h i s  current concept uses 

a more conventional (absorber rods) r eac t iv i ty  control  system and has 

a higher power output (130 kWe). The purpose of t h i s  work is t o  estab- 

l i s h  a consis tent  s e t  of specif icat ions fo r  such a thermionic heat  pipe 

space power system. The emphasis of t h e  study is  on t h e  neutronics and 

general  f e a s i b i l i t y  of t h e  system; thus, t h e  scope is  such t h a t  only a 

cursory assessment of nonneutronics aspects i s  made. 

DESCRIPTION OF TlGBMIONIC SPACE POWER SYSTEN 

The components of a thermionic power system may be categorized i n t o  

a heat source and i t s  control system, a thermionic conversion system, 

and cooling systems f o r  t he  waste heat. 

system i s  a nuclear reactor  which is control led by neutron absorbing 

con t ro l  rods. 

hea t  r a d i a l l y  out of t he  core t o  the thermionic conversion system. 

Figure 1 is a cutaway view of the general reactor  configuration. Upon 

emerging from the  radial r e f l ec to r  the heat  pipes heat t h e  emitters of 

t he  thermionic diodes. The col lectors  of t he  diodes a r e  cooled by an- 

o ther  set of heat pipes which lead t o  rad ia tors .  

c r i p t i o n  of these components f o r  t h i s  concept. 

The heat source f o r  t h i s  power 

The reactor  is  cooled by heat pipes which t r ans fe r  the 

Following i s  a des- 
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The Reactor 

A cyl indr ica l  fast spectrum nuclear reactor ,  fueled by uranium-233 

n i t r i d e  (U233N) i s  used as the heat source. 

235 n i t r i d e  and plutonium-239 n i t r ide )  were compared and the results 

a re  presented i n  appendix A. 

51.0 cm and a diameter of 35.5 cm including the  thickness of t he  molyb- 

denum re f l ec to r s .  

Alternate fue l s  (uranium- 

The $33N reactor  has a length of 

The f u e l  is  clad w i t h  0.05 cm of tungsten ( W )  . 
The reac tor  core consis ts  of a l te rna t ing  fuel and heat pipe s labs  

or disks.  ‘The thickness of each of the f u e l  d i sks  is  l i m i t e d  by the  

power density and heat t ransfer  charac te r i s t ics  of t h e  f u e l  s ince the 

center l ine  temperature must remain below the melting point of U233N. 

The reac tor  i s  re f lec ted  ax ia l ly  on each end by 10 cm of molybdenum 

(Mo) and r a d i a l l y  by a 6-cm th i ck  annulus of Mo. 

Each d isk  of fue l  or heat pipes is  composed of 24 units, each un i t  

being a 15’ sector  ( f i g .  1). 

spec t ,  and t e s t  these pie-shaped sectors individual ly  p r io r  t o  put t ing 

them together i n  an assembly. 

would be oriented, w i t h  respect t o  an adjacent heat pipe layer ,  so 

t h a t  each f u e l  surface would be cooled by two heat pipes ( f i g .  2 ) .  

This staggered or ientat ion would allow the  heat load of a f a i l e d  heat 

pipe t o  be car r ied  by the two flanking heat pipes. 

i n  mind each fue l  sector  contains some tungsten t o  improve the thermal 

conductivity of the  fue l  elements. 

tungsten within a fuel element it should be possible t o  insure the  in -  

t e g r i t y  of t he  fue l  elements even i n  the event of a f a i l u r e  of nonad- 

jacent  heat  pipes. 

It should be possible t o  fabr ica te ,  in -  

On assembly each layer  of f u e l  sectors  

With such a failure 

By proper d i s t r ibu t ion  of t h i s  
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Furthermore, each f u e l  sector  contains some void volume t o  allow 

fo r  fuel expansion and t o  co l l ec t  the gaseous f i s s i o n  products. Vent- 

ing would occur through a molecular sieve o r  an o r i f i c e  t o  out-of-pile 

chambers which are rad ian t ly  cooled. 

i n  Ref. 2 .  The void zones which would separate each f u e l  sec tor  i n t o  

two pieces a l so  contain nitrogen t o  provide the nitrogen.overpressure 

required t o  prevent dissociat ion of the fue l .  Reference 4 indicates  

that an overpressure of 2 - 3 atmospheres (20.3 - 30.4 N/Cm2) is suf-  

f i c i e n t  t o  prevent dissociation. 

melting point of U233X as 3120 IC. 

Such a venting system i s  described 

m e  reference fur ther  quotes the  

The Heat Pipes 

The heat  pipe is  a simple, highly e f f i c i e n t  device capable of 

t ransport ing several hundred times the heat energy per un i t  weight as 

metals such as copper or s i l v e r  (ref. 5 ) .  

almost isothermal operation of t he  heat pipe is  pa r t i cu la r ly  useful  i n  

a thermionic conversion system because it allows t h e  thermionic diodes 

t o  be placed outs ide the  reactor  core i n  a l e s s  severe environment and 

s t i l l  operate a t  about t he  heat pipe evaporator o r  in -p i le  diode emit- 

ter  temperature. 

As  previously s ta ted,  t h e  

Figure 3 i s  a schematic drawing of t h e  heat pipe i l l u s t r a t i n g  t h e  

bas i c  features  and operation. Within the  closed s h e l l  of a heat pipe 

a l i q u i d  working f l u i d  and some s o r t  of cap i l la ry  act ion pump (e.g. ,  

w i r e  mesh, pcrsus wick, or longitudinal grooves) comprise t h e  heat 

t r a n s f e r  loop. When heat is  added t o  the evaporator end of the heat 

pi’pe the  l i q u i d  the r  is’vaporized,  causing the  l o c a l  pressure t o  
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increase. 

gradient.  

l i qu id  is  returned t o  the  evaporator by capi l la ry  pumping i n  the  wick 

material. 

The vapor then flows through the  pipe under the pressure 

A t  the  colder end of t h e  pipe the  vapor condenses and the  

Heat pipes have been! 8eveLloped and experimentalljr kqamined'at 

Los Alamos Sc ien t i f i c  Laboratory; some r e s u l k s  a re  reported i n  Ref. 6. 

Tests were performed with various combinations of wick geometry and 

working f lu ids .  Theoretical analysis of heat pipe operation may be 

found i n  Ref. 7 and 8. The other conversion systems mentioned pre- 

viously require electromagnetic pumping. 

heat pipe system with an electromagnetic pumped loop system is given 

i n  t a b l e  I. 

A comparison of a poten t ia l  

In  t h i s  concept, the  heat pipe w a l l  material  i s  tantalum, 0.05 cm 

th ick .  

or  grea te r  neutron capture cross section than other refractory al loys.  

Thus, it represents a conservative assumption with regard t o  the neu- 

t r o n i c  properties of the reactor.  The f igure  of merit of a heat pipe 

working f l u i d  i s  d i rec t ly  dependent on the  boiling point and inversely 

dependent on the  atomic weight of the f lu id .  

bo i l ing  point of 1603 K and a low atomic weight, w a s  chosen as the  work- 

ing f lu id .  This l i qu id  metal possesses several  other desirable char- 

a c t e r i s t i c s  including the  highest l a t e n t  heat of vaporization of all 

t h e  l i qu id  Eeetals (19.6XlO 

experiments of R e f .  9, i s  another possible working f lu id .  

Tantalum was chosen because it appears t o  have about t he  same 

Lithium-7, with a high 

6 J per kg) . Lead, which was used i n  the  

The evaporator sect ion of each heat pipe i s  a 15O, pie-shape sector,  

about 8 cm long, within t h e  core ( f ig .  1). The heat pipe has a rectan- 



8 

gular  cross section and i ts  internal  thickness of 1 . 2  cm i s  representa- 

t i v e  of the s t a t e  of the a r t .  The heat f lux surfaces a re  those f la t  

sectors  i n  the r a d i a l  plane which bound the  heat pipe. 

heat pipe geometry has some precedence i n  t h a t  heat pipes with rectan- 

-- 
The use of t h i s  

I 
I gular cross sections have been bu i l t  and designs having bends a re  being 

considered. 

The curve i n  Fig. 4 with data taken from Refs. 6, 10, and 11 shows 

measured evaporator heat f lux as a f'unction of lithium-7 temperature. 

In  the  current concept, a heat t ransfer  r a t e  of 250 W/cm2 i n  the  evapo- 

r a t o r  section ( a t  a l i thium temperature of 1770 K) is  used. 

t he  heat f lux a t  1770 K can be larger, t h e  value (250 W/cm2) is  consider- 

ed an average resu l t ing  from the rad ia l  power var ia t ion.  

Although 

The emitter heat pipe wedges my have t o  be rounded a t  the  outer 

end (periphery of the  core) t o  provide proper vapor aad f l u i d  flow w i t h -  

i n  t he  pipe. 

t o r ,  t he  emitter heat pipe becomes an e l l i p t i c a l  cylinder and is  assumed 

t o  operate adiabat ical ly  within the r e f l ec to r .  "he choice of an e l l i p t i -  

c a l  cross sect ion is  influenced by two l imi ta t ions .  F i r s t ,  the  heat den- 

s i t y  i n  the  heat pipe is  assumed t o  be l imited t o  5 kW/cm2 of heat pipe 

cross sect ional  area. This type of l imi ta t ion  a r i s e s  i n  the evaporation 

and capi l la ry  pumping phases of t h e  heat pipe operation. Exceeding t h i s  

l i m i t  can r e s u l t  i n  burnout of t he  heat pipe and subsequent f a i l u r e  as 

a heat  t ransfer  unit .  

t o  t h e  sector thickness (1.2 cm) cannot s a t i s f y  t h i s  l i m i t .  

s ec to r  with t h i s  cross section, t h e  heat density is 7 kW/cm . 
quently a la rger  cross sec t iona l  area is needed. 

During i ts  passage through and outside the  r a d i a l  r e f l ec -  

A c i rcu lar  cross sect ion w i t h  a diameter equal 

For a 15' 

Conse- 2 

However, the loss  of 
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neutrons from the  core through the  heat pipe passages can be appreciable 

so t h a t  a minimal cross section, subject t o  the heat flux l imitat ion,  

should be used. 

heat pipe, t he  la rger  perimeter permits the  r a d i a l  length of heat pipe 

surrounded by thermionic diodes t o  be shorter ,  providing a more compact . 

reactor .  

Secondly, since a certain diode area is  needed for  each 

The e l l i p t i c a l  cross section of t he  heat pipe ( f i g .  5) maintains 

a minor axis  which i s  about equal t o  t he  sector  thickness ( 1 . 2  cm) . 
This r e s t r i c t i o n  t o  the  sector  thickness i s  imposed t o  prevent any pa r t  

of t he  outer surface of the fue l  from being unreflected or, i n  other 

words, from having a d i rec t  l i n e  of s igh t  out of t he  reactor core. The 

length of the  major axis may approach the peripheral  a r e  length of the  

sector ,  which fo r  a 15' sector  i s  about 3 cm. 

Once outside the  r ad ia l  ref lector ,  the  heat pipes may be f la red  t o  

an even larger  cross section. 

surrounded concentrically by thermionic diodes. 

t i o n  i s  discussed i n  the section, The Thermionic Diodes. 

This portion of the  heat pipe w i l l  be 

The detai led configura- 

The col lectors  of t he  diodes are cooled by another s e t  of heat 

pipes. 

pressure of l i thium is re la t ive ly  low, a l i thium heat pipe would not 

operate properly below 1070 K. Therefore, since the  col lector  i s  a t  

about 1000 K, a different  working f lu id  such as cesium w i l l  be needed. 

&se, became of the  lower temperature, a heat pipe material  l i gh te r  

than tantalum may be used. 

The experiments of Kernme (ref.  6) showed that because the  vapor 

All col lector  heat pipes on a given ax ia l  l eve l  terminate i n  a 

common f la t  disk radiator  which encircles the reactor ( f i g .  1 and 6 ) .  
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This type of rad ia tor  was described i n  the  similar reactor  concept of 

Ref. 2.  Fig;  6 i s  taken d i r ec t ly  from Ref. 2 and shows t h e  overa l l  

configuration of t h e  system. As far as t h i s  f igure  is  concerned, t h e  

proposed concept e s sen t i a l ly  d i f f e r s  only by having 10 rad ia tor  disks 

ra ther  than f ive .  

Each rad ia tor  is  a s h e l l  s t ruc ture  is  made of 0.076-cm-thick be- 

ryllium. The t o t a l  rad ia tor  weight depends on the  rad ia tor  configura- 

t ion .  The use of conical radiators  with various angles of divergence 

should allow l e s s  rad ia tor  surface t o  be covered by adjacent radiators ,  

thus, reducing the  weight of t he  t o t a l  rad ia tor .  However, t h e  calcula- 

t i o n  of surface'view fac tors  f o r  radiant heat t r ans fe r  from conical 

rad ia tors  is  beyond the  scope of t h i s  work and it i s  not within t h e  

purpose of t h i s  work t o  contrive a n  optimum radia tor  configuration. 

A mult ip l ic i ty  of heat pipes in a ce l lu l a r  disk arrangement, s i m i -  

lar  t o  that proposed i n  Ref. 1 2 ,  may a l s o  be considered i f  t h e  hollow 

s h e l l  rad ia tor  proves unsatisfactory:. The pipes would provide more ef- 

f i c i e n t  cooling requiring less rad ia tor  surface and, thus, might o f f se t  

t h e  weight penalty incurred by using these multiple f u l l y  c lad heat 

pipes .  

The Thermionic Diodes 

The thermionic power concept described i n  t h i s  paper uses a cyl-  

i n d r i c a l  configuration f o r  t h e  diodes. In Fig. 5, a cross sect ion of 

t h e  cencefitric drode-heat pipe configuration is  shown. 

tungsten emitters of t he  out-of-core diodes enc i rc le  but are e l e c t r i c a l -  

l y  insulated from t h e  heat pipes, by a sheath of beryllium oxide, as 

they  emerge from t h e  radial. r e f l e c t o r .  

The annular 

The annular molybdenum col lec tors ,  
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arranged concentrically around t h e  emitters, are cooled by another 

s e t  of heat pipes which extend in to  the radiator .  

A prototype of a thermionic diode with i ts  emitter heated by a 

heat pipe and i t s  co l lec tor  cooled by a heat pipe has been operated 

(ref.  9 ) .  

on t h e  outside of a cy l indr ica l  tantalum heat pipe. The emitter area 

was 17 .5  cm , and the  emitter-collector gap was 0.035 cm. The molyb- 

denum col lec tor  was s in te red  t o  a niobium-zirconium heat pipe. Work- 

ing f l u i d s  of lead and cesium were used, respectively,  f o r  t he  emitter 

and co l lec tor  heat pipes. 

For t h i s  prototype, the tungsten emitter w a s  vapor plated 

2 

I n  the proposed concept, the  tungsten emitter of thickness 0.076 cm 

2 i s  designed for a heat flux of 45 W/cm a t  1770 K, which is  representa- 

t i v e  of present ly  obtainable performance. 

(0.035 cm) is  f i l l e d  with cesium at a reservoir  temperature of 600 K. 

The 0.076 em-thick co l lec tor  i s  assumed t o  operate a t  about 1000 K. 

U s i n g  t h e  data provided i n  Ref. 9 f o r  similar diode operating con- 

The emitter-collector gap 

d i t i ons ,  an output of 0.5 v o l t  at a current density of 10 A/cm2 of 

emitter i s  obtained with a diode efficiency of 11%. 

vide r e l i a b i l i t y ,  fo r  example, i n  the event of an open c i r c u i t ,  each 

heat  pipe w i l l  use several  adjacent emitters arranged e l e c t r i c a l l y  i n  

p a r a l l e l .  

In  order t o  pro- 

From a fabricat ion standpoint, planar thermionic diodes may be 

preferab ie  t o  cy l indr ica l  diodes. 

it would be possible t o  put planar diodes i n  the  core. 

son, an a l t e rna t ive  configuration using planar in -p i le  thermionic 

diodes might be considered. However, a severe l imi ta t ion  ex i s t s  i n  

3 t h i s  ridial pancake concept, 

For t h i s  rea-  



t h a t  thermionic diodes a re  able  t o  accommodate a maximum of only 80- 

100 w a t t s  of heat flux/cm2. 

onic conversion system which assumes a representat ive heat f l ux  of 

77 w/cm2. 

Reference 13 describes an in-p i le  thermi- 

Since t h e  in-core diode area i s  about t h e  same as t h e  heat pipe 

2 evaporator area,  t h i s  100 W/cm i s  a l so  the  maximum heat f l ux  t h a t  could 

be allowed across a fue l  surface into a heat pipe. This contrasts  

sharply with t h e  250-300 W/cm heat  f lux t h a t  a heat pipe could accept 

i n  t h e  out-of-pile configuration. Consequently, i n  order t o  supply the  

same e l e c t r i c  power with in-p i le  diodes, t h e  core s i ze  would have t o  in-  

crease t o  provide more diode area.  

t h e  e l e c t r i c  output power would be decreased from t h a t  of t h e  out-of- 

p i l e  configuration. 

harsh penalty i n  terms of reactor  s i z e .  

2 

If the  s ize  i s  not increased, then 

Thus, t h e  use of i n -p i l e  diodes w i l l  c rea te  a 

The penalty i n  reactor  core s ize  incurred by use of the in-p i le  

concept indicates  t he  overal l  weight of a shadow-shielded in-pi le  as- 

sembly would be greater  than f o r  an equivalent out-of-pile assembly. 

The r e l a t i v e  weights of t he  two assemblies would not be s o  c l ea r  cut 

i n  t h e  case of f u l l  or four p i  shielding s ince the  protrusion of t he  

heat  pipes through t h e  sh ie ld  would complicate matters. 

The React ivi ty  Control System 

A r e a c t i v i t y  control system of t h e  in-core poison control  r o d  type 

I s  exanined, i n  zor;2;rast t o  the moderator-inert gas-t,hermal absorber 

arrangement i n  Ref. 2 .  The control mechanism used i n  the  current ver- 

s ion  of t h e  concept consis ts  of a central  rod and a concentric tubular 



sheath of boron-10 carbide along the cy l indr ica l  axis  of t he  reac tor .  

Although boron-10 i s  known primarily as a thermal absorber, i t s  neutron 

absorption cross sect ion remains su f f i c i en t ly  high i n  t h e  keV and MeV 

regions t o  enable i t s  use as a fast spectrum reactor  control poison. 

The rod and sheath of boron-10 carbide a r e  separated and cooled by a 

concentric annular heat pipe running t h e  length of t he  core. The con- 

t r o l  absorbers may be separately withdrawn t o  provide two stages of 

control .  

sheath but would remain i n  place i n  t h e  reac tor .  When the  outer sheath 

is  withdrawn, e i the r  it o r  an auxi l iary control  sheath poised a t  t h e  

opposite end of t h e  reactor  may be used as a safe ty  rod. The sheath 

provides su f f i c i en t  r eac t iv i ty  control f o r  s ta r tup ,  including t h e  tem- 

perature  defect .  

view of t h i s  control  region is  shown i n  Fig. 7. A rad ia tor  f o r  t h e  heat 

pipe must be provided a t  t he  a x i a l  end of t he  reactor  and it may be i n  

t h e  conical form described by Salmi  ( r e f .  1 2 ) .  

The annular heat pipe would not be withdrawn with t h e  outer 

The rod provides for burnup and f i n e  control.  A plan 

CHARACTERISTICS OF THE CONCEPT 

The calculat ions performed i n  t h i s  study used the  standard computer 

techniques. 

discussed i n  appendix B. , 

The spec i f ic  computer programs and approximation used a r e  

A symmetric sect ion of the  cyl indrical  reactor  i s  shown i n  Fig. 8. 

The dimensions of t he  configuration a r e  indicated and the  numbered 

mater ia ls  correspond t o  the  composition indicated i n  t a b l e  11. The re-  

sults and performance character is t ics  of t h i s  power concept are now 

presented i n  several  categories.  
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Reactivity Control 

The t o t a l  r eac t iv i ty  control available from t h e  two control  

absorbers with the  dimensions indicated i n  Fig. 8, is about 6$. . ~ h g  

outer sheath provides a r eac t iv i ty  change of about 5$ f o r  s ta r tup .  

i s  su f f i c i en t  t o  bring the  reactor  from a 2 or 3$ subc r i t i ca l  s ta te  t o  

a hot c r i t i c a l  (operating) condition, assuming a temperature defect of 

1 t o  2$ r eac t iv i ty .  

1.1%~ r e a c t i v i t y  fo r  burnup and f i n e  control  of t h e  reactor .  

of t h e  thickness of t he  inner and outer sheaths can y i e ld  d i f fe ren t  

burnup and s t a r tup  r eac t iv i ty  margins. 

This 

The inner rod o f  boron-10 carbide provides about 

Variation 

Assuming a 2.2 MeV e n e r a  re lease fo r  each [q,aljjha]-rreaction i n  

boron-10 and a gamma heat deposition r a t e  not grea te r  than 10 v/g, the  

s ing le  annular heat pipe i s  suf f ic ien t  t o  cool an inner rod of boron-10 

carbide as w e l l  as an outer sheath. 

annular heat pipe would be 0.75 kW/crn2. 

cooled by t h e  annular heat pipe would not exceed the temperature of 

t h e  f u e l  when the  sheath is  inserted a t  fu l l  reactor  power. 

The maximum heat density i n  t h e  

The outer sheath, which is  

Power Tailoring 

To achieve uniform thermionic diode operation, it i s  desirable  t o  

zone the  reactor  so t h a t  eacn ax ia l  l ayer  of diodes i s  a t  approximately 

the  same temperature. 

t h e  heat input over t h e i r  length, the heat f lux  used (250 W/cmz), which 

l a  less than the  miximum, should allow fo r  var ia t ion  i n  r a d i a l  power. 

For t he  purpose of t h i s  study 

i n  t h e  cen t r a l  pa r t  of t he  f u e l  element t o  allow the  fue l  t o  r ed i s t r ib -  

u t e  i t s e l f  so t h a t  there  w i l l  not be excessive hot spots on the  surface 

Since heat pipes have the  property of in tegra t ing  

it i s  assumed t h a t  there  is  enough void 
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of the evaporators. 

was varied fo r  t he  f u e l  disks i n  order t o  provide about t he  same heat  

f lux t o  each of t he  10 axial layers  of heat pipes. 

To perform axia l  power t a i lo r ing ,  t he  f u e l  loading 

The heat f l ux  across each heat pipe surface adjacent t o  a f u e l  sur- 

face i s  250 W/cm2 a t  a fuel-heat pipe in te r face  temperature of 1770 K. 

The highest  f u e l  temperature occurs i n  the  cent ra l  s labs ,  where the  

power peaks occur a t  the  midplane of t h e  f u e l  s labs .  

perature  there  is 2250 K, wel l  below t h e  melting point of t he  $33N 

(3120 K ) .  

v i t y  of U233N (0.26 W/cm2 a t  1270 K) from Ref. 4. 

a x i a l  power p ro f i l e ,  with the  rad ia l  dependence removed, fo r  t h e  un- 

zoned and zoned core. The composition of t h e  f u e l  disks is  given i n  

t a b l e  11. 

The maximum t e m -  

The temperatures were determined using t h e  thermal conducti- 

Figure 9 shows t h e  

The axial power p r o f i l e  at the  i n t e r i o r  and ex ter ior  radii  of t h e  

zoned core fue l  annulus i s  shown i n  Fig. 10. The p ro f i l e s  a r e  qua l i ta -  

t i v e l y  t h e  same but w i t h  t he  in te r ior  p ro f i l e s  a t  a l e v e l  about 1.1 and 

t h e  ex te r io r  p ro f i l e  at a l e v e l  about 0.83 t i m e s  t h e  average power i n  

t h e  core. 

With the  control  sheath withdrawn, simulating the  reactor  i n  opera- 

t ion ,  t he  a x i a l  power p r o f i l e  was obtained for  various stages of rod 

withdrawal. No depletion s tudies  were performed; an undepleted core is  

assumed a t  a l l  stages of withdrawal. 

s eve ra l  s tages  (fldl, two-thirds, and one-third inser t ions)  a r e  shown 

i n  Fig.  11. 

on axial power prof i le .  

The a x i a l  power p ro f i l e s  f o r  

me figure indicates  the rod has l i t t l e  perturbing e f f e c t  

In  par t icular ,  withuthe rod.withdrawn,one-third 
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t h e  l a r g e s t  power increase i n  any slab was  2$. With t h e  rod withdrawn 

twodhi rds  the  p r o f i l e  w a s  essent ia l ly  the same as f o r  t he  one-third 

withdrawn case. 

Heat Pipe Geometry 

2 A t  a heat flux of 250 W/cm , the t o t a l  power deposited i n t o  each 

15' sec tor  heat pipe i s  8.06 kW. If the heat pipe cross sect ion were 

c i r cu la r  with in t e rna l  diameter of 1.2 cm as it enters  t h e  r a d i a l  re -  

f l e c t o r  t h e  heat density would be about 7 kW/cmz which exceeds t h e  

5 kW/c$ limit. 

sumed then the  diode area necessary f o r  each heat  pipe is  179 cm2. 

If t h e  diodes are mounted around the c i rcu lar  perimeter of a 1.3-cm- 

diameter heat pipe, t he  perimeter would be about 4 .1  cm, requiring a 

44-cm r a d i a l  extension t o  accommodate su f f i c i en t  diode area.  

Furthermore, i f  a diode heat f l u x  of 45 W/cm2 is  as- 

However, using an e l l i p t i c a l  cross  sect ion ( f i g .  5) ,  with a minor 

ax i s  of 1 . 2  cm and a major axis of 2 . 4  cm, the heat density i n  the heat 

pipe i s  reduced t o  about 3.6 kW/cm . 
i n  this  study a l s o  hold the  neutron leakage t o  an acceptable leve l .  

2 These dimensions which are used 

While external  dimensions of 1.3 and 2.5 cm f o r  an e l l i p t i c a l  cross 

sec t ion  are sa t i s fac tory  for  passage through t h e  radial re f lec tor ,  they 

a r e  not en t i r e ly  su i t ab le  f o r  a diode mount. 

t h e  reac tor  assembly as compact as possible, and, consequently, t he  

length  of the radial extension needed fo r  diode mounting i s  of concern, 

The minimum radial e x t e ~ s i ~ n  fer diode m u t i n g  i s  29 cm beyond t h e  

r ad ia1 ; r e f l ec to r  fo r  such,,a cross section. However, outside the rad- 

i a l  .Pefl$ktor, '$bene bs no;1fuel; hnd' t he  heatiapipe sector  a rc  length 

It i s  desirable t o  make 
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has increased t o  4.6 cm. 

f la red  out t o  dimensions of 2.0 and 4.0 cm. 

perimeter for  diode mounting (about 9.9 cm), and the  diodes thus re-  

quire an extension of only 18 cm. 

Therefore, t he  e l l i p t i c a l  cross sect ion is  

This provides a la rger  , 

On the  other hand, if 10' sector heat pipes were used, w i t h  c i r -  

cular r a d i a l  extensions, each would carry 5.38 kW a t  a heat density 

of 4.8 kW/cm2. If the  cross section, upon emerging from the  r ad ia l  

re f lec tor ,  were f la red  out t o  e l l i p t i c a l  dimensions of 2.0 and 2.4 cm 

the r a d i a l  extension needed for a diode area of 119 cm2 would be.17 cm. 

Thus, for  a small attendant reduction i n  radiator  and shield weight 

resu l t ing  from t h e i r  smaller radius, t he  use of loo, ra ther  than 15' 

sectors ,  would require 5 6  more heat pipes. 

R e c t r i c a l  System Output 

Since each f u l l y  heated 15' heat pipe requires a t o t a l  diode area 

of &out 180 cm , four diodes of 45 cm Because the  

heat pipes on each ax ia l  end o f  the reactor  receive heat from only one 

s ide  only two diodes w i l l  be needed per heat pipe on these levels .  

although there  a re  240 sector  heat pipes i n  the  reactor,  there  a re  only 

216 equivalent full power heat pipes. The diodes on each heat pipe w i l l  

be e l e c t r i c a l l y  i n  para l le l ,  producing 0.5 v o l t  and, f o r  four diodes, 

1800 A. Calculations indicate that  a beryllium oxide sheath, 0.058-cm 

th ick ,  could hold the integrated e l e c t r i c a l  leakage t o  5% (current loss) 

w i t h  a series voltage of 50 volts across the  diodes. 

50 v o l t  output, it is necessary t o  couple the e l e c t r i c a l  output from two 

2 2 each may be used. 

Thus, 

T3 achieve this  
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adja6ent heat pipes i n  pamallel. 

3600 A a t  54 vo l t s  for  194 kWe, neglecting losses .  

The Cotal system output i s  then 

However, there  are several  losses which m u s t  be considered. The 

assumed e l e c t r i c a l  leakage of 5$ i s  charged as a current  loss ( i n  t h e  

insu la tor )  with an attendant 5% power loss .  

assumed t o  be optimized, a condition fo r  which t h e  power l o s s  due t o  

lead  drop i s  generally about t h e  same as the  diode eff ic iency (11%). 

Also, each diode has an 12R power loss of about 16$ i n  t h e  tungsten 

emitter and molybdenum col lector .  

The diode c i r c u i t r y  i s  

The three loss  mechanisms considered cons t i tu te  a 32$ power loss. 

The ne t  system output thus i s  131 kWe a t  38.3 vo l t s  and 3420 A. 

Radiators 

The rad ia tors  f o r  t h i s  concept a r e  a s e r i e s  of f la t  disks ( f i g .  6 )  

with an ins ide  radius of 0.36 m. The outside r a d i i  are based on calcu- 

l a t i o n s  assuming that 90% of t h e  power is  radiated from t h e  beryllium 

rad ia to r  area. 

a s ink  tmpera tu re  of 0 K i s  assumed f o r  deep space. 

fac tor ,  representing t h e  f r ac t ion  of a radiat ing surface not covered by 

an adjacent rad ia tor ,  i s  a l s o  used. Since t h e  rad ia tor  configuration 

( f i g .  6) is  s i m i l a r  t o  t h a t  i n  Ref. 2 ,  t he  same fac to r  of 0.85 i s  used. 

In  addition t o  a surface emissivity of 0.9 f o r  beryllium 

A surface view 

Each of t he  end rad ia tors  is  designed t o  r ad ia t e  97 kW; a l l  other 

rad ia tors  must r ad ia t e  194 kW. 

1.55, 2.03, 2.39, and 2.70 E. !Phis Srings the overa l l  diameter of the  

power system t o  5.4 m. 

rad ia tor ,  no allowance was made f o r  s t r u c t u r a l  (e.g., s t r u t s )  support 

materials. 

The resu l t ing  outside r a d i i  are 0.96, 

In  determining the  s i z e  and weight of t he  whole 
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CONCLUDING REMARKS 

A summary of reactor ,  heat pipe, and thermionic diode operating 

This shows t h a t  a cy l indr ica l  conditions i s  presented i n  t a b l e  111. 

reactor  core which is  only 2 3 . 4  cm in diameter and 31.0 cm long can 

produce about 130 kW of e l e c t r i c i t y  a t  a po ten t i a l  of about 38 vol t s .  

The volume f rac t ions  and estimated weights of various materials com- 

pr i s ing  the  power system a r e  l i s t e d t a b l e  IV. 

weight of t he  materials for  t h e  reactor,  the  diodes, and t h e  rad ia tor  

is  about 800 kg excluding any shielding. 

The calculated t o t a l  

I n  order t o  allow more uniform heat f lux  t o  t h e  thermionic diodes, 

t h e  axial power d is t r ibu t ion  i s  ta i lored ,  by nonuniform d i s t r ibu t ion  of 

fue l ,  t o  within 5$. 

t r i c  sheath provide respect ive r eac t iv i ty  changes of about 1.1% f o r  burn- 

up and f i n e  control  and about 5$ for s ta r tup .  

A boron-10 carbide cent ra l  control  rod and concen- 

It appears t h a t  t h e  heat pipe will be able  t o  carry away about 

300 W of heat from every square centimeter of in -p i le  heat t ransfer  sur- 

face, which is about t he  same as  the p rac t i ca l  heat flux l i m i t  on forced 

convection l i q u i d  metal system. Furthermore, the  heat pipe can d is -  

t r i b u t e  t h i s  heat flux over a muchlarger heat t ransfer  surface external  

t o  the reactor .  This is important s ince it seems t h a t  t he  thermionic 

diode, even a t  qui te  extreme temperatures, w i l l  be l imited t o  a thermal 

power input less than 100 W/cm 

100 W/cmz presents  a considersble disadvantage f o r  an in-p i le  thermionic 

concept because a nuclear reactor  is capable of producing much higher 

heat fluxes.  Thus, for  t he  same output power, t he  out-of-pile thermionic 

2 of emitter area.  This l imi t a t ion  t o  
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reactor,  when shadow-shielded, can be smaller and l i g h t e r  than the  

equivalent in-pi le  assembly. 

An added a d W t a g e  is  that the use of heat pipes extending o u t s i ~ e  

the  reactor  core d i rec t ly  t o  radiators  eliminates the  need f o r  a second- 

ary l i qu id  cooling loop. 

APPENDIX A 

ALTERNATE FUELS 

If uranium-235 n i t r i d e  (U235N) is  used as the  f u e l  (with the  same 

volume f rac t ion  as f o r  the  U233N case) and only the  reactor  diameter is 

varied, the  core diameter m u s t  increase t o  36 cm i n  order t o  obtain a 

c r i t i c a l  configuration. The volume of U235N needed is  thus 2.5 times 

the  amount of v233N necessary. 

the same the power output of the U235N core a lso increases by about two 

and one-half t i m e s  over the U233N output. 

dimensions of 31 cm (length) and 36 cm (diameter); it would supply a 

power output of 325 kWe and would require 145 kg of U235N. 

son, the  U233N core has dimensions of 31 cm (length) and 23.4 cm ( d i -  

ameter); it can provide 130 kWe of e l e c t r i c  power and uses 5% kg of 

U233N. 

arrays,  radiators ,  and re f lec tors  would be accordingly increased from 

the  U233N case. 

Since the  a x i a l  geometry and length is  

!l?hus, a U235N core would have 

By compari- 

Of course, f o r  the  U235N core the  s i z e  and weight of the  diode 

The use of plutonium-239 n i t r ide  ( P L ~ ~ ~ ’ N )  would r e s u l t  i n  a core 

of about tine same dinienalons, =over output, and f u e l  mass as the $33N 

case. Furthermore, with a nitrogen overpressure of 1 atmosphere 

(10.13 N/cm2), the melting point of P u ~ ~ ’ N  i s  2870 K (compared t o  a 

maximum f u e l  temperature of 2250 K) . 
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APPENDIX B 

METHOD OF CALCULATIONS 

The composition of the materials and their homogenized atom den- 

sities are presented in table 11. 

are used in performing the axial zoning are shown in this table. 

Several fuel slab compositions which 

Cross sections for the calculations were obtained from the GAM-I1 

Thirteen fast groups were used, the multigroup compilation (ref. 14). 

structure of which is shown in table V. Most of the spatial calculations 

were performed with 13 groups in one dimension ( 1 - D )  in the S&-Po (trans- 

port correct) approximation using the TDSN program (ref. 15). 

two-dimensional r-z calculations were made, using 4 groups, to provide 

normalization for the 1-D calculations and to determine power profile 

fo r  control rod withdrawal stages. 

that shown in Fig. 8 and the reduced group structure used is indicated 

in table V. 

However, 

The 2-D geometry is very closely 
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One o r  more pumps per loop. 
sur izer  and l i qu id  metal pur f ie r  
required. System not permanently 
sealed.  Single leak  i n  system 
catastrophic.  

Pres- 

TABLE I. - COMPARISON OF ELECTROMAGNETIC COOLANT 
LOOP W I T H  HEAT PIPES 

No mechanical pumps--many perma- 
nently sealed individual loops. 
System designed so t h a t  a s ing le  
leak  can only e f f ec t  one heat 
pipe loop. 

Fluid temperature across core i s  
an inverse function of pumping 
power. 

3. Pumping 

EM pumps ine f f i c i en t  and require 
e l e c t r i c i t y .  Allowable magnet 
temperature is l imited t o  below 
Curie temperature. 

Isothermal 

:har&ter i s t ics  

~ ~ ~~ ~~~ ~~ 

5. A f t e r  heat removal 

Reactor has t o  be operated a t  a 
considerable power l e v e l  t o  gen- 
erate enough e l e c t r i c i t y  t o  run the 
Pump 

After heat automatically radiated 
away without core meltdown. 

i 

6. Restart  

Heaters f o r  t h e  complete system 
--: W L L ~  1 

l i q u i d  m e t a l  without burst ing t h e  
pipes .  

Should be able  t o  r e s t a r t  without 
t he  use of external  heaters.  be reqirec? t o  remelt t h e  

Heat pipes more e f f i c i en t .  Use 
thermal energy d i rec t ly .  

I - ...- 
4. Pm~5q  mC!-fl-rulctinn 

Would required pump switching I No pumps. Malfunction i n  indi-  1 vidual  heat pipe is  provided for .  
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TABLE 11. - COMPOSITION OF RMCTOR MATERIALS 

Component"' 'I 
Fuel 0 

F u e l  @ 

Fuel  @ 

FueJ @ 

Fuel  @ 

Compos it ion  

0.547 U233N 
,189 Void 
.264 W 

0.556 U233N 
.188 Void 
.256 W 

0.575 U2'?N 
.184 Void 
241 W 

0.631 U233N 
.173 Void 
.196 W 

0.723 U233N 
,158 Void 
.121 w 

_ _  
Nuclide 

W 

W 

W 

W 

1.908 

1.668 

1.668 

1.618 

2.007 

1.523 

2.204 

1.239 

8,533 

.7647 
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TABLE 11. - COMPOSITION OF REACTOR MATERIALS (con ' t )  

Heat pipe @ 

6ontrol  absorber @ 

Axial r a d i a l  re: 
f l e c t o r  @ 

Homogenized radial 
r e f l e c t o r  and heat 
pipe @ 

~~ 

Composition 

~- 

0.077 Ta 
.923 Void 

Bi°C 

Mo 

.551 Mo 

.449 Void 

Nuclide Nuclear density 
atom/(b) (d 

I Natural Ta 0.4253 

I 11.64 

Natural Mo I 6.4 

Natural Mo 3.526 

"The lithium-7 i n  the  heat pipe was neglected. 

bSee Fig. 8 for  t he  number assignment. 
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TABLE 111. - SUMMARY OF OPERfiTING CHARACmISTICS OF THE POWER SYSTEM 

Reactor: 

Fuel volume f rac t ion  
Number of f u e l  layers  
Length including 20 cm of a x i a l  re f lec tor ,  m 
Diameter including 12  cm of r a d i a l  re f l . ,  m 
Diameter of l a r g e s t  radiator ,  m 
Maximum f ie1  temperature, K 
Fuel c lad temperature, K 

Power density i n  f u l l  core, W/cm3 
. Total thermal power, MW 

0.. 334 
9 

. .51 

.355 
5.4 

2250 
1 7 7 0  
1.74 
130 

Heat pipes : 

Number of sec tors  per axial l eve l  
Heat flux i n to  heat pipe, W/cm2 
Total  heat per fW-1 powered sector,  kW 
Total  heat  per layer ,  kW 
Maximum heat density ( i n  r a d i a l  r e f l ec to r ) ,  kW/cm2 
Radial extension for diodes, m 
Total  number of heat pipes at full power 
Total  number of heat pipes at half power (layers a t  ends of 

core) 

~ ~ _ _ _ _  

24 
250 

8.06 
193.5 

3.56 
0.18 

192 

48 

Thermionid diodes : 

Number of emitters per full power heat pipe 
Total  number of diodes 
Temperature of emitter,  K 
Temperature of col lector ,  K 
h i t t e r  and col lector  thickness, cm 

2 Ehi t t e r  area per diode, cm 
Current density, A/cm2 
h i t t e r  perimeter, cm 
Ehitter length, cm 
Heat f lux  a t  diode, W/cmz 
Emitter e l e c t r i c a l  power density, W/cm 
Diode efficiency, percent 
E lec t r i ca l  power per diode, W 

2 

output voltage,  v 

4 
864 

1770 
1000 
.076 

45 
10 
10 

4 .5  
45 

5 
11 

225 
0.5 



TABLE 111. - SuMMeRY OF OPERATING CHARACTERISTICS 
OF THE POWER SYSTEM (con’ t )  

System output: 

Total voltage, V 
Total output current,  A 
Total power output, kW 
Power l o s t  through leakage, (5% kW 
Power l o s t  through leads (11$), kW 
Power l o s t  through 12R drop, (“lS$) 
N e t  output power, kW 
5 percent current loss through leakage, A 
N e t  output current,  A 
N e t  output po ten t ia l ,  V 
Overall efficiency, percent 

54 
3600 
134.4 
9.72 
21.4 
32.0 
131 
180 
3420 
38.3 
7.5 
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TABLE IV. - ESTIMATED WEIGHTS OF SYSTEM COMPONENTS 

Component 

Heat pipe i--- 
Ref lec tor  

Diode 

Radiator 

Control systen: 

1 Total  

Material 

Uranium-2 33 n i t  r i d e  
-sten 

Tantalum ( i n  core) 
Tantalum (extension) 
Lithium 

Molybdenum 

Tungsten (emi t te r )  
Molybdenum (co l l ec to r )  

Beryllium 

Boron-10 Carbon 

Valiune ; 
cm3 

4 061; 
1 544 

713 
2 65C 
5 085 

20 210 

2 95c 
2 950 

190 000 

1 167 

Weight, 
kg 

58.2 
29.8 

11.8 
44.0 

2.5 

206.0 

57.0 
30.1 

351.5 

2.9 

794 
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TABLE V. - ENERGY GROUP STRUCTURE 
I GAM-I1 ( fast )  

Group number 

1 
2 
3 
4 

5 
6 
7 
8 
9 
10 
11 

12 
13 

Low energy 
boundary" 

1.35 MeV 

3 . 6  MeV. 
2 . 2  MeV, 

820 keV 

498 keV 
302 keV 
183 keV 
111 keV 
41 keV 
15 keV 
5531 eV 

1 
I 

' Reduced group 
number I 

1 

2 

749 e V  3 

.414 eV I 4  
%e upper energy boundary of group 1 
5s 15 MeV. 
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REACTOR CONFIGURATION INCLUDING T H E  r-z GEOMETRY USED 
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